Allows Connection to Existing Pipelines Under Pressure

Specially designed tapping saddle allows pipe branch connection to pressurized "Hot" lines without system shut-down. Available in PVC White, Gray or CPVC Gray configurations.

- Industrial Grade Bolt-on Saddle with EPDM or FKM O-ring Seals and Choice of Zinc Plated Steel or Type 316 Stainless Steel Hardware.
- Built-in Brass or Stainless Steel Cutter Easily Cuts Hole in PVC, CPVC, HDPE and PP Pipe. Special Design Captures and Retains Coupon from Hole.
- Pressure Rated to 235 psi @ $73^{\circ} \mathrm{F}$.
- Available to fit IPS Pipe 2" through 8" with Versatile 3/4" Socket - 1" Spigot Combination Branch Outlet or 1"-1/2" Socket-2" Spigot Combination Branch Outlet.

TECHNICAL DATA			
Maximum Service Temperatures	Pressure	Rating @ $73^{\circ} \mathrm{F}$	
PVC	$140^{\circ} \mathrm{F}$	$2^{\prime \prime}-4 "$	
CPVC	$200^{\circ} \mathrm{F}$	$6^{\prime \prime}$	
Note: Elevated service temperatures	$8^{\prime \prime}$	200 psi	
require system pressure de-rating.			

Not for Distribution of Compressed Air or Gas

Some leakage is possible during the tapping process, therefore "hot-taps" are not recommended for corrosive or dangerous fluid medium.

Dimensions - Saddle x Socket (Spigot)

Size	G	G1	H	H 1	H2	L	L1	M
$2 \times 3 / 4(1)$	$3-9 / 16$	1	$6-3 / 16$	2	$1-1 / 2$	$2-7 / 16$	$3-7 / 16$	2
$2 \times 1-1 / 2(2)$	$4-1 / 2$	$1-1 / 4$	$8-1 / 2$	$2-11 / 16$	$1-1 / 2$	$2-7 / 16$	$3-7 / 8$	$2-7 / 8$
$2-1 / 2 \times 3 / 4(1)$	$3-15 / 16$	1	$6-9 / 16$	2	$1-3 / 4$	$4-1 / 8$	$4-1 / 8$	2
$2-1 / 2 \times 1-1 / 2(2)$	$4-13 / 16$	$1-1 / 4$	$8-3 / 16$	$2-11 / 16$	$1-3 / 4$	$4-1 / 8$	$4-1 / 8$	$2-7 / 8$
$3 \times 3 / 4(1)$	$3-15 / 16$	1	$6-5 / 8$	2	2	3	$4-3 / 4$	2
$3 \times 1-1 / 2(2)$	$5-1 / 8$	$1-1 / 4$	$9-1 / 8$	$2-11 / 16$	2	$4-1 / 8$	$4-3 / 4$	$2-7 / 8$
$4 \times 3 / 4(1)$	$4-11 / 16$	1	$7-5 / 16$	2	$2-5 / 8$	3	$5-13 / 16$	2
$4 \times 1-1 / 2(2)$	$5-1 / 4$	$1-1 / 4$	$9-5 / 8$	$2-11 / 16$	$2-5 / 8$	$4-1 / 8$	$5-13 / 16$	$2-7 / 8$
$6 \times 3 / 4(1)$	6	1	$8-5 / 8$	2	$3-13 / 16$	3	$8-3 / 16$	2
$6 \times 1-1 / 2(2)$	$6-15 / 16$	$1-1 / 4$	$10-15 / 16$	$2-11 / 16$	$3-13 / 16$	$4-1 / 8$	$8-3 / 16$	$2-7 / 8$
$8 \times 3 / 4(1)$	$6-3 / 4$	1	$9-5 / 16$	2	$4-7 / 8$	$8-1 / 2$	$10-1 / 16$	2
$8 \times 1-1 / 2(2)$	$8-1 / 4$	$1-1 / 4$	$12-1 / 4$	$2-11 / 16$	$4-7 / 8$	$8-1 / 2$	$10-1 / 16$	$2-7 / 8$

