Pressure Rating

$$
P=\frac{2 S t}{D-t} \quad S=P \frac{(D-t)}{2 t}
$$

P is the pressure rating in psi.
S is the Hydrostatic Design Basis (usually 4000 psi) divided by the safety factor (which is 2 for the three standards).
DR is the Dimension Ratio for D2241 and C905 but is OD/t for D1785
Where:
P = Pressure, psi
S = Circumferential stress, psi
$D=$ Outside diameter of pipe, inches
d = Inside diameter of pipe, inches (average based on mean wall)
$t=$ Average wall thickness, inches
Volume capacity-gallons per ft. length $=\mathrm{VG}=\mathrm{V} \times 0.004329$
Volume capacity-cubic inches per ft. length $=V=0.7854 \times \mathrm{d}^{2} \times 12$
Outside pipe surface, sq. ft per ft. length $=A O=\frac{D^{2} \pi}{12}$
Inside pipe surface, sq. ft. per ft. length $=A_{1}=\frac{d \pi}{12}$
Cross-sectional plastic area, sq. in. $=A=\frac{\left(D^{2}-d^{2}\right) \pi}{4}$
Cross sectional flow area, sq. in. $=A_{F}=\frac{d^{2} \pi}{4}$
Weight of PVC pipe, lb. per ft. length $=\mathrm{W}_{\text {Pvc }}=.632 \times \mathrm{A}$
Weight of CPVC pipe, lb. per ft. length $=\mathrm{W}_{\text {cpvc }}=.705 \times \mathrm{A}$
Weight of water in pipe, lb. per ft. length $=W_{w}=0.433 A_{F}$
Weight of water filled pipe, lb. per ft. length $=W_{\text {WFP }}=W_{\text {PVc }}\left(\right.$ or $\left.W_{\text {cPvc }}\right)+W_{w}$
Radius of gyration, inches $=r_{g}=\sqrt{\frac{D^{2}+d^{2}}{4}}$
Moment of inertia, inches fourth $=I=A r_{g}{ }^{2} .0491\left(D^{4}-d^{4}\right)$
Section modulus, inches cube $=Z=\frac{2_{1} /}{D}=0.0982 \times \frac{\left(D^{4}-d^{4}\right)}{D}$

Thermal Expansion and Contraction

$\Delta \mathrm{L}=12 \mathrm{yL}(\Delta \mathrm{T})$
Where:
$\Delta L=$ Expansion or contraction of pipe in inches
$y=$ Coefficient of thermal expansion
(see PVC or CPVC material Thermal properties) L = Length of pipe run in feet
$\Delta \mathrm{T}=$ Temperature change ${ }^{\circ} \mathrm{F}$ (Maximum temperature - Temperature @ Installation or maximum system temperature

- lowest system temperature, whichever is greater)

Friction Loss (Hazen-Williams equations)

$$
\mathrm{f}=.2083 \times(100 / \mathrm{C})^{1.852} \times \frac{\mathrm{G}^{1.852}}{\mathrm{di}^{4.8655}}
$$

Where:
$f=$ Friction head of feet of water per 100' for the specific pipe size and I.D.
C = A constant for internal pipe roughness (=150 for thermoplastic pipe)
$G=$ Flow rate of U.S. gallons per minute
$\mathrm{di}=$ Inside diameter of pipe in inches
Water Velocities
$\mathrm{V}=.3208 \mathrm{x} \frac{\mathrm{G}}{\mathrm{A}}$
Where:
$V=$ Velocity in feet per second
$G=$ Gallons per minute
A = Inside cross sectional area in square inches
Gallons Per Minute Through Pipe
GPM $=0.0408 \times$ Pipe Diameter Inches $2 \times$ Feet Per Minute Velocity

Pressure Drop in Valves

$\mathrm{P}=\frac{\mathrm{G}^{2} \mathrm{xS}_{\mathrm{g}}}{\mathrm{CV}^{2}}$

Where:

P = Pressure drop in PSI; feet of water $=$ PSI/. 4332
$G=$ Gallons per minute
$\mathrm{S}_{\mathrm{g}}=$ Specific gravity of liquid
$\mathrm{C}_{\mathrm{V}}=$ Gallons per minute per 1 PSI pressure drop (see Valve product Cv from manufacturer)

Water Conversions

1 foot of head $=0.434 \mathrm{PSI} \quad 1$ cubic foot water $=7.5$ gallon $=62.5$
1 gallon $=231$ cubic inch $=8.333$ pounds pounds (salt water $=64.3$ pounds)
1 pound water $=27.7$ cubic inches 1 miner's inch $=9$ to 12 gallons per minute
Horsepower to Raise Water = Gallons Per Minute x Total Head in Feet

