

Pressure Rating

$$P = \frac{2St}{D-t} \qquad S = P(\underline{D-t})$$

P is the pressure rating in psi.

S is the Hydrostatic Design Basis (usually 4000 psi) divided by the safety factor (which is 2 for the three standards). DR is the Dimension Ratio for D2241 and C905 but is OD/t for D1785

Where:

P = Pressure, psi

S = Circumferential stress, psi

D = Outside diameter of pipe, inches

d = Inside diameter of pipe, inches (average based on mean wall)

t = Average wall thickness, inches

Volume capacity-gallons per ft. length = VG = V x 0.004329 Volume capacity-cubic inches per ft. length = V = 0.7854 x d²x 12 Outside pipe surface, sq. ft per ft. length = $AO = \frac{D^2 \pi}{12}$ Inside pipe surface, sq. ft. per ft. length = $A_1 = \frac{d\pi}{12}$ Cross-sectional plastic area, sq. in. = $A = \frac{(D^2 - d^2)\pi}{4}$ Cross sectional flow area, sq. in. = $A_F = \frac{d^2\pi}{4}$ Weight of PVC pipe, lb. per ft. length = $W_{PVC} = .632 \times A$ Weight of CPVC pipe, lb. per ft. length = $W_{wFP} = .705 \times A$ Weight of water in pipe, lb. per ft. length = $W_{wFP} = W_{PVC}$ (or W_{CPVC}) + W_W Radius of gyration, inches = $r_g = \sqrt{\frac{D^2 + d^2}{4}}$ Moment of inertia, inches fourth = I = $Ar_g^2.0491(D^4 - d^4)$ Section modulus, inches cube = $Z = \frac{21}{D} = 0.0982 \times (\frac{D^4 - d^4}{D})$

Thermal Expansion and Contraction

 Δ L = 12 yL (Δ T) *Where:* Δ L = Expansion or contraction of pipe in inches y = Coefficient of thermal expansion

(see PVC or CPVC material Thermal properties) L = Length of pipe run in feet

 Δ T = Temperature change °F (Maximum temperature - Temperature @ Installation or maximum system temperature whichever is greater)

- lowest system temperature, whichever is greater)

Pipe & Hangers Technical Industry Piping Formulas

Friction Loss (Hazen-Williams equations)

$$f = .2083 \text{ x} (100/\text{C})^{1.852} \text{ x} \frac{G}{di} \frac{1.852}{4.8655}$$

Where:

f = Friction head of feet of water per 100' for the specific pipe size and I.D.
C = A constant for internal pipe roughness (=150 for thermoplastic pipe)
G = Flow rate of U.S. gallons per minute
di = Inside diameter of pipe in inches

Water Velocities

 $V=.3208x\underline{G}$

Where:

V = Velocity in feet per second

G = Gallons per minute

A = Inside cross sectional area in square inches

Gallons Per Minute Through Pipe

GPM = 0.0408 x Pipe Diameter Inches 2 x Feet Per Minute Velocity

Pressure Drop in Valves

$$\begin{split} P &= \frac{G^2 x \, S_g}{C V^2} \\ & \textit{Where:} \\ P &= \text{Pressure drop in PSI; feet of water = PSI/.4332} \\ G &= \text{Gallons per minute} \\ S_g &= \text{Specific gravity of liquid} \\ C_V &= \text{Gallons per minute per 1 PSI pressure drop (see Valve product Cv from manufacturer)} \end{split}$$

Water Conversions

1 foot of head = 0.434 PSI	1 cubic foot water = 7.5 gallon = 62.5
1 gallon = 231 cubic inch = 8.333 pounds	pounds (salt water = 64.3 pounds)
1 pound water = 27.7 cubic inches	1 miner's inch = 9 to 12 gallons per minute
Horsepower to Raise Water = Gallons Per Minute x Total Head in Feet	
3960	